Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(2): 248-261, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36209429

RESUMO

Stored water in inner tissues influences the plant water economy, which might be particularly relevant for trees facing increasing dry conditions due to climate change. We studied the water storage in the inner bark and the sapwood of Araucaria araucana (Molina) K. Koch. This species has an extremely thick inner bark and thus it can be used as a model system to assess the impact of internal water storage on plant water balance. Specifically, we analyzed the water circulation pathways in and out of the elastic water storages by using simultaneously frequency domain moisture sensors and dendrometers inserted in the inner bark and in the sapwood, and sap flow determinations during the dry season. The daily patterns of water content and expansion and contraction of the stem tissues were similar to the sap flow pattern. The whole-stem water content and diameter increased in the morning and decreased in the afternoon, contrary to the typical pattern observed in most tree species. An osmotic gradient favoring the water influx from sapwood to inner bark was observed in the morning. There were no lags in the onset of sap flow between different stem heights at the time that recharge of reservoirs occurred. Sap flow at 6 m height was higher than basal sap flow in the afternoon, when the sapwood water content started to decline followed by the water content of the inner bark. Inner bark and sapwood contributed 5-11% to total daily transpiration, allowing the maintenance of high water potentials in the dry season. Our results suggest that the stored water in the stems, the atypical dynamic of recharge and discharge of water from reservoirs and the high tissue capacitance may make an important contribution to the survival of A. araucana during drought periods by maintaining the water balance.


Assuntos
Araucaria araucana , Água , Água/metabolismo , Secas , Casca de Planta/metabolismo , Transpiração Vegetal , Ritmo Circadiano , Árvores/metabolismo , Caules de Planta/metabolismo
2.
Front Microbiol ; 11: 1491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719665

RESUMO

Forest replacement by exotic plantations drive important changes at the level of the overstory, understory and forest floor. In the Atlantic Forest of northern Argentina, large areas have been replaced by loblolly pine (Pinus taeda L.) monocultures. Plant and litter transformation, together with harvesting operations, change microclimatic conditions and edaphic properties. Management practices such as thinning promote the development of native understory vegetation and could counterbalance negative effects of forest replacement on soil. Here, the effects of pine plantations and thinning on physical, chemical and microbiological soil properties were assessed. Bacterial, archaeal, and fungal community structure were analyzed using a metabarcoding approach targeting ribosomal markers. Forest replacement and, to a lesser extent, thinning practices in the pine plantations induced significant changes in soil physico-chemical properties and associated shifts in bacterial and fungal communities. Most measured physical and chemical properties were altered due to forest replacement, but a few of these properties reached values similar to natural forests under the thinning operation. Fungal alpha diversity decreased in pine plantations, whereas bacterial alpha diversity tended to increase but with little statistical support. Shifts in community composition were observed for both fungal and bacterial domains, and were mostly related to changes in plant understory composition, soil carbon, organic matter, water content, pH and bulk density. Among several other changes, highly abundant phyla such as Proteobacteria (driven by many genera) and Mortierellomycota (mainly driven by Mortierella) decreased in relative abundance in the plantations, whereas Acidobacteria (mainly driven by Acidothermus and Candidatus Koribacter) and Basidiomycota (mainly driven by the ectomycorrhiza Russula) showed the opposite response. Taken together, these results provide insights into the effects of forest replacement on belowground properties and elucidate the potentially beneficial effect of thinning practices in intensive plantation systems through promoting the understory development. Although thinning did not entirely counterbalance the effects of forest replacement on physical, chemical and biological soil properties, the strategy helped mitigating the effects and might promote resilience of these properties by the end of the rotation cycle, if subsequent management practices compatible with the development of a native understory vegetation are applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...